Combining Models and Observations: Bayesian Approaches

Mark Berliner

Ohio State University

Outline

- Main Themes: Goals and Approaches
- Bayesian Hierachical Models
- Two Classes of Approaches with Examples
- Discussion

Supported by NSF, EPA, NASA

Introduction

- Selected Motivations
 - computational & observational enhancements
 offer both new opportunities & new challenges
 - need for uncertainty management

• Goals:

- develop probability distribution for unknowns of interest.
- combine information: observations, theory, computer model output, past experience, etc.
- Framework: Bayesian Hierarchical Models

Bayesian Hierarchical Modeling (BHM)

- BHM: sequence of conditional probability models
- Quintessential BHM: Data Y; Process of interest X
 - 1. Data Model $[Y | X, \theta]$
 - 2. Process Model $[X | \theta]$
 - 3. Parameter Model [θ]
- Bayes' Theorem: $[X, \theta \mid Y]$

Compare

- "Statistics": $[Y \mid \theta]$ (& $[\theta]$ for Bayesians)
- "Physics": $[X | \tilde{\theta}(Y)]$

Approaches

- 1. Stochastic models incorporating science
 - (a) Physical-statistical modeling (Berliner 2003 JGR) From "F=ma" to process model [$\mathbf{X} \mid \boldsymbol{\theta}$] Three examples
 - (b) Qualitative use of theory (eg., Pacific SST model Berliner et al. 2000 J. Climate)
- 2. Incorporating large-scale computer models
 - (a) From model output to priors on
 - Parameters $[\theta]$
 - Model output as samples from process model [X $\mid \theta$]
 - (b) Model output as "observations" (Y)
- 3. Combinations

Lab-Sea Air Model Royle et al 1998

- Process: near-surface (10m) winds W = (U, V)
- Why? Several uses (e.g., driving ocean models)
- Data: Scatterometer-based estimates
- Physics: Geostrophic Approximation "Winds are linear in the gradient of the pressure field"

$$\mathbf{v_g} = \mathbf{c} \frac{\partial \mathbf{P}}{\partial \mathbf{x}}, \ \mathbf{u_g} = -\mathbf{c} \frac{\partial \mathbf{P}}{\partial \mathbf{v}}$$

Balance pressure potential & Coriolis

Pretty good at mid-latitudes & upper altitude

Not good at 10m (friction, turbulence); or if large curvature in pressure field

Lab Sea Grid and Scatterometer Data

Stochastic Geostrophic Model

Let (U, V), P be gridded wind vector components and pressure.

• Data Model: $[D_u, D_v | U, V, \sigma_d^2]$:

$$\left(egin{array}{c} \mathbf{D_u} \ \mathbf{D_v} \end{array}
ight) \sim \mathbf{Gau}\left(\mathbf{K}\,\left(egin{array}{c} \mathbf{U} \ \mathbf{V} \end{array}
ight), \left(egin{array}{c} oldsymbol{\sigma_{\mathrm{d}}^2} \mathbf{I} & \mathbf{0} \ \mathbf{0} & oldsymbol{\sigma_{\mathrm{d}}^2} \mathbf{I} \end{array}
ight)
ight)$$

- Process Model:
 - $-[\mathbf{U},\mathbf{V}|\mathbf{P},oldsymbol{\mu}_{\mathbf{u}},oldsymbol{\mu}_{\mathbf{v}},oldsymbol{eta},oldsymbol{\Sigma}_{\mathbf{u}\mathbf{v}}]$:

$$\left(egin{array}{c} \mathbf{U} \ \mathbf{V} \end{array}
ight) \sim \mathbf{Gau}\left(\left(egin{array}{c} oldsymbol{\mu_{\mathrm{u}}}\mathbf{1} + \mathbf{B_{\mathrm{u}}}(oldsymbol{eta})\mathbf{P} \ oldsymbol{\mu_{\mathrm{v}}}\mathbf{1} + \mathbf{B_{\mathrm{v}}}(oldsymbol{eta})\mathbf{P} \end{array}
ight), oldsymbol{\Sigma_{\mathrm{uv}}} \otimes \mathbf{I}^*
ight)$$

B's: discrete derivative estimates with random coefficients

- $-\left[\mathrm{P}|\mu_{\mathrm{p}},\Sigma_{\mathrm{p}}
 ight] \; \mathrm{(Thiebaux} \; 1985)$
- Parameter priors

Posterior Means: Winds and Pressure Field

Glacial Dynamics Berliner et al. 2008 J. Glaciol.

- Flow: gravity moderated by drag (base and sides) &
- Simple flow models: flow from geometry.

Data

Program for Arctic Climate Regional Assessments (PARCA) Radarsat Antarctic Mapping Project (RAMP)

- S: surface topography (Laser altimetry)
- B: basal topography (Radar altimetry)
- U: velocity data (Interferometry)

Modelling

- Processes: surface; s: base; H: thickness; u: velocity
- Physical Model
 - Basal Stress $\boldsymbol{\tau} = -\boldsymbol{\rho} \, \mathbf{g} \, \mathbf{H} \, \mathbf{s}' + \mathbf{stuff}$
 - $\begin{array}{l} \ Velocities \ u = u_b + \beta_0 \, H \, \boldsymbol{\tau}^n \\ where \ u_b = k \, \boldsymbol{\tau}^p \, (\boldsymbol{\rho} \, g \, H)^{-q} \end{array}$
- Our Model
 - Basal Stress $\tilde{ au} = ho\,\mathrm{g}\,\tilde{\mathrm{H}}\,\tilde{\mathrm{s}}' + \eta$ where η is a "corrector process", $\tilde{\mathrm{H}}, \tilde{\mathrm{s}}$ are unknown
 - $$\begin{split} &-\text{Velocities } u = \tilde{u}_b + \beta \, \tilde{H} \, \tilde{\tau}^n + e \\ &\text{where } u_b = k \, \tilde{\tau}^p \, (\rho \, g \, \tilde{H})^{-q} \text{ or an unknown constant,} \\ &\beta \text{ is unknown, e is a noise process.} \end{split}$$
 - Smoothing

Air-Sea Interaction Berliner et al 2004 JGR

• Processes:

- Ocean streamfunction ψ (feature related to currents)
- Near-surface winds W
- Data
 - D_a Wind data (scatterometer)
 - D_o Ocean data (altimeter)
- Physics: Quasi-geostrophy (QG)

$$\mathbf{J}_{\mathbf{r}}(\nabla^{2} - \frac{1}{\mathbf{r}^{2}})\frac{\partial \boldsymbol{\psi}}{\partial \mathbf{t}} = -\mathbf{J}(\boldsymbol{\psi}, \nabla^{2}\boldsymbol{\psi}) - \boldsymbol{\beta}\frac{\partial \boldsymbol{\psi}}{\partial \mathbf{x}} + \frac{1}{\boldsymbol{\rho}\mathbf{H}}\operatorname{curl}_{\mathbf{z}}\boldsymbol{\tau}(\mathbf{W}) - \boldsymbol{\gamma}\nabla^{2}\boldsymbol{\psi} + \mathbf{a}_{\mathbf{h}}\nabla^{4}\boldsymbol{\psi}$$

• Stochastic: $[\psi|W]$ from QG Couple with [W] and we're "done"

Near-surface Ocean Winds Wikle et al 2001 JASA

- Data sources
 - Scatterometer
 - NCEP Analyses
- Space-time process model
 - Modes of linearized shallow-fluid equations (large scales)
 - Wavelets (small scales)
 - Both with time-varying coefficients
- Priors: turbulence theory

Discussion

- No claim of solving PDE
 - we often introduce noise (but not "solving" SPDE)
 - made parameters random
 - role of stability (i.e., CFL conditions) depends on data quality and goals
- No free lunch: Concerns about
 - computation (MCMC; importance sampling)
 - quality of each component of a BHM
- Transition to Part II: We usually need very large ensembles Not practical if $[X \mid \theta]$ involves a massive computer model

Combining Models and Observations: Bayesian Approaches II

Mark Berliner

Ohio State University

Goals

- Develop probability distribution for unknowns of interest.
- Combine information: observations, theory, computer model output, past experience, etc.
- Do all this while accounting for uncertainty
- Framework: Bayesian Hierarchical Models

Supported by NSF, EPA, NASA

Bayesian Hierarchical Modeling (BHM)

- BHM: sequence of conditional probability models
- Quintessential BHM: Data Y; Process of interest X
 - 1. Data Model $[Y | X, \theta]$
 - 2. Process Model $[X | \theta]$
 - 3. Parameter Model [θ]
- Bayes' Theorem: $[X, \theta \mid Y]$

Compare

- "Statistics": $[Y \mid \theta]$ (& $[\theta]$ for Bayesians)
- "Physics": $[X | \tilde{\theta}(Y)]$

Approaches

- 1. Stochastic models incorporating science
 - (a) Physical-statistical modeling (Berliner 2003 JGR) From "F=ma" to process model [$\mathbf{X} \mid \boldsymbol{\theta}$] (Three examples)
 - (b) Qualitative use of theory (eg., Simple Pacific SST model Berliner et al. 2000 J. Climate)
- 2. Incorporating large-scale computer models
 - (a) From model output to priors on
 - Parameters $[\theta]$
 - Model output as samples from process model [X $\mid \theta$]
 - (b) Model output as observations
- 3. Combinations

(a) From model output to priors

- Think of model output runs O_1, \dots, O_n as a sample from some distribution
- Do data analysis on the O's to estimate distribution
 - develop prior on X: [X] or [X| θ]
 - $-\operatorname{develop} [\theta]$
- Common Example: O's are spatial fields: estimate spatial covariance function of X based on O's.

Ex) Anthropogenic Climate Change

- Detection & Attribution: CO₂ and temperature
- g spatial pattern of anticipated CO₂ impacts (usually based on a climate system model)
- Model: Data = ag + noise
- Test a = 0 vrs $a = \mu_c$

BHM Berliner, Levine & Shea 2000 J. Climate 2000

- NCAR Climate System Model (CSM)
- 1000 year control run; 300 year CO₂-forced run
- Data: Jones' surface temperature record

Process: True Surface Temperature T Record

- 1. [Data \mid T] : D \sim Gau(KT, Σ_D)

 K maps data to CSM grid; Σ_D from literature.
- 2. [T | a]: $T \sim Gau(aG, \Sigma_T)$
- 3. $[a] = p Gau(0, \tau^2) + (1 p) Gau(\mu_c, \tau_c^2)$
- $\Sigma_{\rm T}$: estimated using the model output.
- g: (CO₂-forced output) minus (control output).
- Hyperparameter estimation via subsampling model output.
 - Control Run: broken into 30 samples of length 10. Regress sample onto g. Produces 30 estimates of a under "no forcing" Use their variance to estimate τ^2
 - Forced Run: similar procedure to estimate $\mu_c, \boldsymbol{\tau}_c^2$

Analyses

• Let â be generalized least squares estimate of a: Posterior is

$$[\mathbf{a} \mid \mathbf{\hat{a}}] = \mathbf{p}(\mathbf{\hat{a}}) \, \mathbf{Gau}(\cdot, \cdot) + (\mathbf{1} - \mathbf{p}(\mathbf{\hat{a}})) \, \mathbf{Gau}(\cdot, \cdot)$$

- Uncertainty about uncertainty: ranges over classes of priors and as p varies
- $P(a \approx 0 \mid \hat{a}) \& P(a \approx \mu_c \mid \hat{a})$

(b) Model output as observations

- Act as if no <u>formal</u> difference between model output & observations
- In many cases "observations" are "model output"
- Nice way to combine information sources "Observe" what you can; compute what you can't"
- Experimental Design Combined observational-computer model experiments
- Other contexts!! (weather forecasting)

Multimodel ensembles as observations

- Set-up: m = 1, ..., M models. Scalar (for now) climate variable X. (time fixed)
- Data Model: Three Main Steps:

For kth ensemble member from Model m:

$$\mathbf{Y}_{mk} = \mu_{m} + \mathbf{e}_{mk}, \text{ (Step 1)}$$

$$= (\beta + \mathbf{b}_{m} + \mathbf{e}_{\mu_{m}}) + \mathbf{e}_{mk}, \text{ (Step 2)}$$

$$= ((\mathbf{X} + \mathbf{e}_{\beta}) + (\mathbf{b}_{0m} + \mathbf{e}_{\mathbf{b}_{m}}) + \mathbf{e}_{\mu_{m}}) + \mathbf{e}_{mk}, \text{ (Step 3)}$$

• X vrs β is key

Formally:

 \vec{Y}_m : ensemble of size n_m of derived estimates of X from model m.

1. Given means and variances $\mu_{\rm m}, \sigma_{\rm Y_m}^2;$ $\vec{Y}_{\rm m}$ are independent and

$$ec{\mathbf{Y}}_{\mathrm{m}}|\boldsymbol{\mu}_{\mathrm{m}} \sim \mathrm{Gau}(\boldsymbol{\mu}_{\mathrm{m}} ec{\mathbf{1}}_{\mathrm{n}_{\mathrm{m}}}, \boldsymbol{\sigma}_{\mathrm{Y}_{\mathrm{m}}}^2 \ \mathbf{I}_{\mathrm{n}_{\mathrm{m}}})$$

2. Given β , biases b_m and variances $\sigma_{\mu_m}^2$; μ_m are independent and

$$m{\mu}_{
m m} |m{eta}, {
m b}_{
m m} \sim {
m Gau}(m{eta} + {
m b}_{
m m}, \ m{\sigma}_{m{\mu}_{
m m}}^2)$$

3. Given X,

$$m{eta}|\mathbf{X} \sim \mathbf{Gau}(\mathbf{X}, \ m{\sigma}_{m{eta}}^2) \ \ \mathbf{and} \ \ \mathbf{b_m}|\mathbf{X} \sim \mathbf{Gau}(\mathbf{b_{0m}}, m{\sigma}_{\mathbf{b_m}}^2)$$

Implied Marginal: "Y given X"

Integrating out β induces dependence:

$$egin{pmatrix} egin{pmatrix} \ddot{\mathbf{Y}}_1 \ \ddot{\mathbf{Y}}_2 \ drapprox \ddot{\mathbf{Y}}_{\mathbf{M}} \end{pmatrix} | \mathbf{X} \sim \mathbf{Gau} \begin{pmatrix} (\mathbf{X} + \mathbf{b_{01}}) ec{\mathbf{I}}_{\mathbf{n_1}} \ (\mathbf{X} + \mathbf{b_{02}}) ec{\mathbf{I}}_{\mathbf{n_2}} \ drapprox & drapprox \ (\mathbf{X} + \mathbf{b_{0M}}) ec{\mathbf{I}}_{\mathbf{n_M}} \end{pmatrix}, \ egin{pmatrix} \mathbf{X}_1 & \mathbf{b_{01}} & \mathbf{C_{11}} & \mathbf{C_{12}} & \dots & \mathbf{C_{1M}} \ \mathbf{C_{21}} & egin{pmatrix} egin{pmatrix} egin{pmatrix} \mathbf{C_{2M}} \ dots & & dots \ \mathbf{C_{M1}} & \dots & \dots & egin{pmatrix} egin{bmatrix} \eq{bmatrix} \eq{bmatrix} \eq{bmatrix} \eq{bmatrix} \eq$$

- ullet $C_{mm'}$ is $n_m \times n_{m'}$ with all entries $\sigma^2_{oldsymbol{eta}}$
- $ullet \ {
 m v}_{
 m m}^2 = oldsymbol{\sigma}_{oldsymbol{\mu}_{
 m m}}^2 + oldsymbol{\sigma}_{
 m b_m}^2 \ {
 m and}$

$$\boldsymbol{\Sigma}_{m} = \begin{pmatrix} \boldsymbol{\sigma}_{\boldsymbol{\beta}}^{2} + \boldsymbol{v}_{m}^{2} + \boldsymbol{\sigma}_{Y_{m}}^{2} & \boldsymbol{\sigma}_{\boldsymbol{\beta}}^{2} + \boldsymbol{v}_{m}^{2} & \dots & \dots \\ \boldsymbol{\sigma}_{\boldsymbol{\beta}}^{2} + \boldsymbol{v}_{m}^{2} & \boldsymbol{\sigma}_{\boldsymbol{\beta}}^{2} + \boldsymbol{v}_{m}^{2} + \boldsymbol{\sigma}_{Y_{m}}^{2} & \dots & \dots \\ \vdots & & \vdots & & \vdots \\ \dots & & \dots & \boldsymbol{\sigma}_{\boldsymbol{\beta}}^{2} + \boldsymbol{v}_{m}^{2} + \boldsymbol{\sigma}_{Y_{m}}^{2} \end{pmatrix}$$

Remarks

- Covariances in marginal
 - Modify intuition about value of increasing ensemble size
 - Infinite ensembles do not give "perfect" forecasts: if all biases are 0, "infinite" ensembles tell the value of β , not X
- d dimensional X: σ 's become Σ 's

Hemispheric Surface Temperatures

- d=2. X: hemispheric- & monthly-averaged surface temp's
- Observations Y: 1882-2001. Model output O: 2002-2097.
- M=2: PCM, CCSM (THANKS: Claudia Tebaldi, NCAR)

Background

- Anthropogenic Climate Change:
 - CO₂ emissions forecasts: IPCC-SRES scenarios (we used 3)
 - Plugged into models: Climate forecasts
- Our view here
 - Climate-weather: multiscale phenomena
 - "Climate" as parameters of distribution of "weather" (Berliner 2003: Stat. Sci.)

Model Overview

- 1. $[Y|X^p, \theta][O|X^f, \theta]$
 - \bullet [Y|X^p, θ]: measurement error model
 - ullet [O|X^f, eta]: 3 stage data model above, with
 - conditional independence of O over time.
 - covariances $\Sigma_{oldsymbol{eta}}, \Sigma_{oldsymbol{\mu}_m}, \Sigma_{Y_m}$ and biases constant
 - $-\Sigma {m{\mu}}_{
 m m} + \Sigma_{
 m Y_m} = \Sigma_{
 m m}$

2. $[X^p|\theta][X^f|X^p,\theta]$

• Time series models (AR) with time varying parameters

$$\mathbf{X_t} = oldsymbol{lpha_{i(t)}} + egin{pmatrix} oldsymbol{\eta_{j(t)}^n} & \mathbf{0} \ \mathbf{0} & oldsymbol{\eta_{i(t)}^s} \end{pmatrix} (\mathbf{X_{t-1}} - oldsymbol{lpha_{i(t-1)}}) + \mathbf{e_{(t)}}$$

• Correlated errors

3. $[\theta]$

- Time evolution: $\alpha_{i(t)}$ slow; $\eta_{j(t)}$ moderate; e_t fast (but variances of e_t slow)
- $\alpha_i = a + b CO_{2i} + noise$
- Obs period: $\eta_j = c + d SOI_j + noise$ Fore period: AR model (i.e., SOI not observed)
- Variances of e_t: AR-like
- Model selection!!!
 Used Obs period data only: slow: 8 years; moderate: two years

Remarks

- Relax simplifications; assess model.
- Information on covariances: climate model assessment; overlap real observations and model output.
- Prior on biases in fore. period are crucial
- Model classes: Model different β 's
 - Combine huge (expensive) & simple (cheap) models
 - One model with different parameterizations
- Dimension reduction: selection of climate variables
- Picking the models to use as data vrs the prior on X
- Uninformative priors for X

Discussion

- Combine observations and model output Wikle et al. (2001) JASA, Hoar et al. (2003) JCGS
 - Spatio-temporal tropical ocean winds
 - Model: features of linearized PDE & a bit of turbulence
 - Data: Scatterometer & "Analysis Fields"
- Simple models in conjunction with BHM may be better than either "more faithful models" or "statistical models"